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Abstract 

  
We develop an empirical model for the warm-up drift 

in harmonic phase standards used to calibrate the phase 
distortion of nonlinear vector network analyzers. This 
model will enable us to estimate the time at which the 
standards reach stability.  

  
Introduction 

  
A class of instruments known as nonlinear vector 

network analyzers (NVNA) are capable of characterizing 
nonlinear devices under realistic, large-signal operating 
conditions [1]. To do this, complex traveling waves are 
measured at the ports of a device both at the stimulus 
frequency (or frequencies), and at other frequencies that 
are part of the large-signal response. These include 
harmonics and intermodulation products created by the 
nonlinearity of the device, in conjunction with impedance 
mismatches between the system and the device. The 
calibration of a commercial NVNA consists of three 
steps: a relative calibration identical to that used in a 
linear vector network analyzer, an amplitude calibration 
that makes use of a power meter, and a phase distortion 
calibration that makes use of a harmonic phase standard. 
All are performed on a frequency grid related to the 
source tones and the anticipated nonlinear response of the 
device. 

A commercial harmonic phase standard (HPS) is 
driven at a fundamental frequency and produces a 
harmonic-series output signal. The HPS, which is used as 
a transfer standard, is characterized by a sampling 
oscilloscope, which in turn is characterized by a nose-to-
nose calibration [2]. In this way, we transfer the phase-
dispersion calibration of an oscilloscope to “knowing” the 
phase relationship of each harmonic of the HPS. 

In a previous study [3], we presented a repeatability 
study of two commercial harmonic phase standards 
measured by an NVNA. By performing multiple 
calibrations and measurements, we determined the 
repeatability bounds for the phases and magnitudes of 
each harmonic component by utilizing the propagation-of-
errors method to compute expanded uncertainties. We 
also studied the possibility of warm-up drift in the two 
devices, and discovered considerable drift as a function of 
time, with an estimated 1/e time-constant of around 500 
seconds, which is much longer than the warm-up time of 
120 seconds set by the manufacturer’s control software. 
 
* Work of an agency of the U.S. Government, not subject to U.S. 
Copyright. 

In this paper, we develop an empirical model for the 
warm-up drift of HPS devices, which will enable us to 
estimate their phase angle response stability time-points. 

  
Drift Model of the Phase Angle Response 

  
In the process of searching for a suitable empirical 

model, we found that two first-order decay terms with an 
intercept produced excellent fits to all drift data collected 
to date in repeated calibrations runs on both HPS devices. 
The nonlinear decay model for drifting phase 
measurements of a given harmonic is 
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where p is the measured phase angle, φ is the stable phase 
value after warm-up, t > 0 is the time from start-up, 1α and 

1β  are the unknown parameters of the first decay term, 

2α and 2β are the unknown parameters of the second 
decay term, and ε is a random error term with mean zero 
and a standard deviation σ . It is not too surprising that 
this particular empirical model works so well, considering 
that each HPS contains two nonlinear components, 
namely an amplifier and a step-recovery diode. 

If the subscript i (i = 1, … n) denotes the number of 
repeated measurements and ti and pi represent the 
associated time and measured phase, then estimates of the 
unknown model parameters {φ , 1α , 1β , 2α , 2β } can be 
obtained from the usual nonlinear least-squares solution 
that minimizes the error sum of squares:  
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where ip̂  is the predicted value of the ith measured phase 
angle, and is given as 
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 Here we have used the convention of denoting the least-
squares estimates of the parameters by placing a caret 
over the respective symbols for the unknown parameters. 
If we assume that the random errors iε are independent 
Gaussian variates, then the least-squares estimates are 
also the maximum likelihood estimates of the parameters. 

Given the least-squares solution, the variance of the 
random error ε in eq. (1) is estimated, in the usual way, 
from the residual sum of squares as 
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  Figure 1 shows the actual measured phase angles of 
the fifth harmonic together with the estimated curve using 
the exponential decay model of eq. (1). In this particular 
experiment, we made 1000 repeated measurements of the 
20 GHz HPS using a fundamental frequency of 600 MHz, 
with a five-second pause between each measurement. The 
residuals from the fitted curve are shown in Figure 2. The 
apparent randomness and homogeneity of variance in 
time are consistent with the assumptions that were made 
with respect to additive noise in the model.  
 

 
 
Figure 1. Phase angles of the fifth harmonic of the 20 GHz HPS along 
with the estimated curve using the exponential decay model. 
 

 
 

Figure 2. Residuals from the fitted curve. 
  

Estimation of Stable Phase Angle Time-Point 
  

When a phase measurement is made that is consistent 
with the decay model of eq. (1), the measured phase 
differs from the stable value φ  by a systematic error that 
depends on time, plus a random effect. The actual 
(unknown) systematic error of a measurement at time t, 
denoted as )(tδ , is 
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where E(p|t) is the expected phase angle at time t. Since 
the error )(tδ  is decreasing in time, we define the “true” 
stable time-point to be the time t when )(tδ  = ∆ , where ∆  
is a given error bound judged to be acceptable with 

respect to the intended use of a phase-angle measurement.  
Since )(tδ  depends on unknown parameters, statistical 
methods are required to estimate the stable time-point. 

Given estimates of the decay parameters from a warm-
up experiment, an appropriate estimate of )(tδ  is 
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The least-squares analysis also provides estimated 
variances and covariances of the decay parameter 
estimates, which can be used to derive an approximate 
upper confidence bound on )(tδ , based on the classical 
large-sample Normal distribution theory of nonlinear least 
squares. With this approach, the estimated variance of 

)(tδ  is obtained by substituting estimated model 
coefficients, variances and covariances into the 
propagation-of-errors (POE) formula for the variance of 

)(ˆ tδ . Letting )(ˆ tSδ (t ≥ 0) denote the estimated POE 

standard error of )(ˆ tδ , an upper (100×γ ) percent 
confidence bound )(tU  on )(ˆ tδ  is given by 
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where γN denotes the 100×γ th percentile of the standard 
Gaussian distribution, and t is the estimated time when                        

∆=)(tδ  can be taken as the solution of the equation 
.)( ∆=tU   

  The procedure outlined above is useful for 
retrospective analysis of a single drift experiment or a 
combined analysis of two or more runs where the drift 
parameters are believed to be constant regardless of the 
measurement occasion.  However, since the drift 
parameters may vary significantly from run to run, two 
other statistical procedures are being developed:  (1) real-
time “stability” decisions (perhaps to be embedded in 
system software) or, (2) estimation of a fixed, minimum 
warm-up time for a particular HPS when sufficient repeat 
runs are available for analysis.  The latter approach 
accounts for run-to-run differences by treating decay 
parameters in eq. (1) as random, rather than fixed 
coefficients. Any procedure would have to simultaneously 
account for the drift of all relevant harmonics.  
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